Reishi Program
an Education Program
Marble Surface

​Ganoderma lucidum, an oriental fungus, has a long history of use for promoting health and longevity in China, Japan, and other Asian countries. It is a large, dark mushroom with a glossy exterior and woody texture. The Latin word lucidus means “shiny” or “brilliant,” and refers to the varnished appearance of the surface of the mushroom. In China, G. lucidum is called lingzhi, whereas, in Japan, the name for the Ganodermataceae family is reishi or mannentake.

​In Chinese, the name lingzhi represents a combination of spiritual potency and essence of immortality and is regarded as the “herb of spiritual potency,” symbolizing success, well-being, divine power, and longevity.


Among cultivated mushrooms, G. lucidum is unique in that its pharmaceutical rather than nutritional value is paramount. A variety of commercial G. lucidum products are available in various forms, such as powders, dietary supplements, and tea. These are produced from different parts of the mushroom, including mycelia, spores, and fruit bodies. The specific applications and attributed health benefits of lingzhi include control of blood glucose levels, modulation of the immune system, hepatoprotection, bacteriostasis, and more. The various beliefs regarding the health benefits of G. lucidum are based largely on anecdotal evidence, traditional use, and cultural mores. However, recent reports provide scientific support to some of the ancient claims of the health benefits of lingzhi.


Lingzhi has been recognized as a medicinal mushroom for over 2000 years, and its powerful effects have been documented in ancient scripts (Wasser 2005). The proliferation of G. lucidum images in art began in 1400 AD, and they are associated with Taoism (McMeekin 2005). However, G. lucidum images extended beyond religion and appeared in paintings, carvings, furniture, and even women’s accessories (Wasser 2005). The first book wholly devoted to the description of herbs and their medicinal value was Shen Nong Ben Cao Jing, written in the Eastern Han dynasty of China (25-220 AD). This book is also known as “Classic of the Materia Medica” or “Shen-nong’s Herbal Classics.” It describes botanical, zoological, and mineral substances, and was composed in the second century under the pseudonym of Shen-nong (“the holy farmer; Zhu, 1998).


The book, which has been continually updated and extended, describes the beneficial effects of several mushrooms with a reference to the medicinal mushroom G. lucidum (Zhu, 1998; Upton 2000; Sanodiya et al. 2009). In the Supplement to Classic of Materia Medica (502-536 AD) and the Ben Cao Gang Mu by Li Shin-Zhen, which is considered to be the first pharmacopeia in China (1590 AD; Ming dynasty), the mushroom was attributed with therapeutic properties, such as toning effects, enhancement of vital energy, strengthening of cardiac function, increase in memory, and antiaging effects. According to the State Pharmacopoeia of the People’s Republic of China (2000), G. lucidum acts to replenish Qi, ease the mind, and relieve cough and asthma; it is recommended for dizziness, insomnia, palpitation, and shortness of breath.


Wild lingzhi is rare, and in the years before it was cultivated, only the nobility could afford it. It was believed that the sacred fungus grew in the home of the immortals on the “three aisles of the blessed” off the coast of China (McMeekin 2005). However, its reputation as a panacea may have been earned more by virtue of its irregular distribution, rarity, and use by the rich and privileged members of Chinese society than by its actual effects. Nevertheless, the Ganoderma species continue to be a popular traditional medicine in Asia and their use is growing throughout the world (Wachtel-Galor, Buswell et al. 2004; Lindequist, Niedermeyer, and Jülich 2005).



​The family Ganodermataceae describes polypore basidiomycetous fungi as having a double-walled basidiospore (Donk 1964). In all, 219 species within the family have been assigned to the genus Ganoderma, of which G. lucidum (W. Curt.: Fr.) P. Karsten is the species type (Moncalvo 2000). Basidiocarps of this genus have a shiny surface that is associated with the presence of thick-walled pilocystidia embedded in an extracellular melanin matrix (Moncalvo 2000). Ganoderma species are found all over the world, and different characteristics, such as shape and color (red, black, blue/green, white, yellow, and purple) of the fruit body, host specificity, and geographical origin, are used to identify individual members of the species (Zhao and Zhang 1994; Woo et al. 1999; Upton 2000). Unfortunately, the morphological characteristics are subject to variation resulting from, for example, differences in cultivation in different geographical locations under different climatic conditions and the natural genetic development (e.g., mutation, recombination) of individual species.


Consequently, the use of macroscopic characteristics has resulted in a large number of synonyms and a confused, overlapping, and unclear taxonomy for this mushroom. Some taxonomists also consider macromorphological features to be of limited value in the identification of Ganoderma species due to their high phenotypic plasticity (Ryvarden 1994; Zhao and Zhang 1994). More reliable morphological characteristics for Ganoderma species are thought to include spore shape and size, context color and consistency, and the microanatomy of the pilear crust. Chlamydospore production and shape, enzymatic studies, and, to a lesser extent, the range and optima of growth temperatures have also been used for differentiating morphologically similar species (Gottlieb, Saidman, and Wright 1998; Moncalvo 2000; Saltarelli et al. 2009).


Biochemical, genetic, and molecular approaches have also been used in Ganoderma species taxonomy. Molecular-based methodologies adopted for identifying Ganoderma species include recombinant (rDNA) sequencing (Moncalvo et al. 1995; Gottlieb, Ferref, and Wright 2000), random amplified polymorphic DNA-PCR (RAPD; PCR stands for polymerase chain reaction), internal transcribed spacer (ITS) sequences (Hseu et al. 1996), sequence-related amplified polymorphism (SRAP; Sun et al. 2006), enterobacterial repetitive intergenic consensus (ERIC) elements, and amplified fragment length polymorphism (AFLP; Zheng et al. 2009). Other approaches to the problem of G. lucidum taxonomy include nondestructive near-infrared (NIR) methods combined with chemometrics (Chen et al. 2008), nuclear magnetic resonance (NMR)-based metabolomics (Wen et al. 2010), and high-performance liquid chromatography (HPLC) for generating chemical fingerprints (Su et al. 2001; Chen et al. 2008; Shi, Zhang et al. 2008; Chen et al. 2010).


Owing to its irregular distribution in the wild and increasing demand for G. lucidum as a medicinal herb, attempts were made to cultivate the mushroom (Chang and Buswell 2008). Different members of the Ganoderma genus need different conditions for growth and cultivation (Mayzumi, Okamoto, and Mizuno 1997). Moreover, different types are favored in different geographical regions. For example, in South China, black G. lucidum is popular, whereas red G. lucidum is preferred in Japan. G. lucidum thrives under hot and humid conditions, and many wild varieties are found in the subtropical regions of the Orient.


Since the early 1970s, the cultivation of G. lucidum has become a major source of the mushroom.  Artificial cultivation of G. lucidum has been achieved using substrates such as grain, sawdust, wood logs (Chang and Buswell 1999; Wasser 2005; Boh et al. 2007), and cork residues (Riu, Roig, and Sancho 1997). Since it takes several months to culture the fruiting body of G. lucidum, mycelia-based and culture broth-based products have assumed greater importance due to demands for increased quality control and year-round production (Sanodiya et al. 2009).


The processes and different growth parameters (e.g., temperature, pH) involved in submerged mycelial culture can easily be standardized under controlled conditions, and purification and other downstream processing of active components such as polysaccharides released into the culture medium usually involve relatively simple procedures. Different culture conditions and medium compositions have also been reported to strongly influence mycelial growth and the production of biopolymers (e.g., polysaccharides) that are extruded from the cell (exopolysaccharides [EPSs]; Mayzumi, Okamoto, and Mizuno 1997; Chang and Buswell 1999; Habijanic and Berovic 2000; Fang and Zhong 2002; Boh et al. 2007; Sanodiya et al. 2009). For example, Yang and Liau (1998) reported that polysaccharide production by fermenter-grown mycelia of G. lucidum was optimum at 30°C–35°C and a pH of 4–4.5, and the addition of supplements such as fatty acids was found to accelerate mycelial growth and the production of bioactive components.


In a submerged culture of G. lucidum, the optimum pH for cell growth has been shown to be lower than that for EPS formation. A two-stage pH-control strategy, developed to maximize mycelial biomass and EPS production, revealed that culture pH had a significant effect on EPS yield, chemical composition and molecular weight, and mycelial morphology (Kim, Park, and Yun 2006). The productive mycelial morphological form for EPS production was a dispersed pellet (controlled pH shift from 3.0 to 6.0) rather than a compact pellet with a dense core (pH maintained at 4.5) or a featherlike pellet (controlled pH shift from 6.0 to 3.0). Three different polysaccharides were obtained under each pH condition, and their molecular weights and chemical compositions were significantly different (Kim, Park, and Yun 2006). More recently, a novel three-stage light irradiation strategy has been developed in submerged cultures of G. lucidum for the efficient production of polysaccharides and one of the triterpene components, ganoderic acid (Zhang and Tang 2008).

A decade ago, more than 90 brands of G. lucidum products were registered and marketed internationally (Lin 2000). Worldwide consumption is now estimated at several thousand tons, and the market is growing rapidly. Although there are no recently published data relating to the total world market value of Ganoderma products, in 1995, the total estimated annual market value given by different commercial sources was US$1628 million (Chang and Buswell 1999). Numerous G. lucidum products, prepared from different parts of the mushroom, are currently available on the market (Chang and Buswell 2008).


In manufacturing terms, the simplest type consists of intact fruiting bodies ground to powder and then processed to capsule or tablet form. Other “non-extracted” products are prepared from the following three sources: (1) dried and powdered mycelia harvested from submerged liquid cultures grown in fermentation tanks; (2) dried and powdered combinations of substrate, mycelia, and mushroom primordia, following inoculation and incubation of a semisolid medium with fungal mycelia; and (3) intact fungal spores or spores that have been broken by mechanical means or have had the spore walls removed. Although spore preparations have been researched and promoted vigorously in recent years, any added medicinal effects attributable to the removal or breakage of spore walls, which represents an additional and often costly step in the production process, are still controversial.

Other products are prepared with materials (e.g., polysaccharides, triterpenes) extracted, usually with hot water or ethanol, from fruiting bodies or mycelia harvested from submerged liquid cultures and then evaporated to dryness and tabulated/encapsulated either separately or integrated together in designated proportions. The adoption of supercritical fluid CO2 extraction technologies has enlarged the spectrum of extracted substances due to the low temperature required during processing. Several other products have been prepared as binary, ternary, or more complex mixtures of powdered Ganoderma and other mushrooms (e.g., Lentinula edodes, Agaricus brasiliensis, Grifola frondosa, Pleurotus spp., and Flammulina velutipes) and even with other medicinal herbs (e.g., spirulina powder or flower pollen grains).


Most mushrooms are composed of around 90% water by weight. The remaining 10% consists of 10–40% protein, 2–8% fat, 3–28% carbohydrate, 3–32% fiber, 8–10% ash, and some vitamins and minerals, with potassium, calcium, phosphorus, magnesium, selenium, iron, zinc, and copper accounting for most of the mineral content (Borchers et al. 1999). In a study of the nonvolatile components of G. lucidum, it was found that the mushroom contains 1.8% ash, 26–28% carbohydrate, 3–5% crude fat, 59% crude fiber, and 7–8% crude protein (Mau, Lin, and Chen 2001).


In addition to these, mushrooms contain a wide variety of bioactive molecules, such as terpenoids, steroids, phenols, nucleotides and their derivatives, glycoproteins, and polysaccharides. Mushroom proteins contain all the essential amino acids and are especially rich in lysine and leucine. The low total fat content and a high proportion of polyunsaturated fatty acids relative to the total fatty acids of mushrooms are considered significant contributors to the health value of mushrooms (Chang and Buswell 1996; Borchers et al. 1999; Sanodiya et al. 2009).


Polysaccharides, peptidoglycans, and triterpenes are three major physiologically active constituents in G. lucidum (Boh et al. 2007; Zhou et al. 2007). However, the amount and percentage of each component can be very diverse in natural and commercial products, as exemplified by the data shown in Table 9.1. When 11 randomly selected samples of commercial lingzhi products purchased in Hong Kong shops were evaluated for the two major active components, triterpenes and polysaccharides, it was found that the triterpene content ranged from undetectable to 7.8%, and the polysaccharide content varied from 1.1–5.8% (Chang and Buswell 2008). Such variations can occur for several reasons, including differences in the species or strains of mushroom used and differences in production methods.

Polysaccharides and Peptidoglycans

Fungi are remarkable for the variety of high-molecular-weight polysaccharide structures that they produce, and bioactive polyglycans are found in all parts of the mushroom. Polysaccharides represent structurally diverse biological macromolecules with wide-ranging physiochemical properties (Zhou et al. 2007). Various polysaccharides have been extracted from the fruit body, spores, and mycelia of lingzhi; they are produced by fungal mycelia cultured in fermenters and can differ in their sugar and peptide compositions and molecular weight (e.g., ganoderans A, B, and C). G. lucidum polysaccharides (GL-PSs) are reported to exhibit a broad range of bioactivities, including anti-inflammatory, hypoglycemic, antiulcer, antitumorigenic, and immunostimulating effects (Miyazaki and Nishijima 1981; Hikino et al. 1985; Tomoda et al. 1986; Bao et al. 2001; Wachtel-Galor, Buswell, et al. 2004).


Polysaccharides are normally obtained from the mushroom by extraction with hot water followed by precipitation with ethanol or methanol, but they can also be extracted with water and alkali. Structural analyses of GL-PSs indicate that glucose is their major sugar component (Bao et al. 2001; Wang et al. 2002). However, GL-PSs are heteropolymers and can also contain xylose, mannose, galactose, and fucose in different conformations, including 1–3, 1–4, and 1–6-linked β and α-D (or L)-substitutions (Lee, Lee, and Lee 1999; Bao et al. 2002). Branching conformation and solubility characteristics are said to affect the antitumorigenic properties of these polysaccharides (Bao et al. 2001; Zhang, Zhang, and Chen 2001). The mushroom also consists of a matrix of the polysaccharide chitin, which is largely indigestible by the human body and is partly responsible for the physical hardness of the mushroom (Upton 2000). Numerous refined polysaccharide preparations extracted from G. lucidum are now marketed as over-the-counter treatments for chronic diseases, including cancer and liver disease (Gao et al. 2005).


Various bioactive peptidoglycans have also been isolated from G. lucidum, including G. lucidum proteoglycan (GLPG; with antiviral activity; Li, Liu and Zhao 2005), G. lucidum immunomodulating substance (GLIS; Ji et al. 2007), PGY (a water-soluble glycopeptide fractionated and purified from aqueous extracts of G. lucidum fruit bodies; Wu and Wang 2009), GL-PS peptide (GL-PP; Ho et al. 2007), and F3 (a fucose-containing glycoprotein fraction; Chien et al. 2004).


Terpenes are a class of naturally occurring compounds whose carbon skeletons are composed of one or more isoprene C5 units. Examples of terpenes are menthol (monoterpene) and β-carotene (tetraterpene). Many are alkenes, although some contain other functional groups, and many are cyclic. These compounds are widely distributed throughout the plant world and are found in prokaryotes as well as eukaryotes. Terpenes have also been found to have anti-inflammatory, antitumorigenic, and hypolipidemic activity. Terpenes in Ginkgo biloba, rosemary (Rosemarinus officinalis), and ginseng (Panax ginseng) are reported to contribute to the health-promoting effects of these herbs (Mahato and Sen 1997; Mashour, Lin, and Frishman 1998; Haralampidis, Trojanowska, and Osbourn 2002).

Triterpenes are a subclass of terpenes and have a basic skeleton of C30. In general, triterpenoids have molecular weights ranging from 400 to 600 kDa and their chemical structure is complex and highly oxidized (Mahato and Sen 1997; Zhou et al. 2007). Many plant species synthesize triterpenes as part of their normal program of growth and development. Some plants contain large quantities of triterpenes in their latex and resins, and these are believed to contribute to disease resistance. Although hundreds of triterpenes have been isolated from various plants and terpenes as a class have been shown to have many potentially beneficial effects, there is only limited application of triterpenes as successful therapeutic agents to date. In general, very little is known about the enzymes and biochemical pathways involved in their biosynthesis.

In G. lucidum, the chemical structure of the triterpenes is based on lanostane, which is a metabolite of lanosterol, the biosynthesis of which is based on cyclization of squalene (Haralampidis, Trojanowska, and Osbourn 2002). Extraction of triterpenes is usually done by means of methanol, ethanol, acetone, chloroform, ether, or a mixture of these solvents. The extracts can be further purified by various separation methods, including normal and reverse-phase HPLC (Chen et al. 1999; Su et al. 2001). The first triterpenes isolated from G. lucidum are the ganoderic acids A and B, which were identified by Kubota et al. (1982). Since then, more than 100 triterpenes with known chemical compositions and molecular configurations have been reported to occur in G. lucidum. Among them, more than 50 were found to be new and unique to this fungus. The vast majority are ganoderic and lucidenic acids, but other triterpenes such as ganoderals, ganoderiols, and ganodermic acids have also been identified (Nishitoba et al. 1984; Sato et al. 1986; Budavari 1989; Gonzalez et al. 1999; Ma et al. 2002; Akihisa et al. 2007; Zhou et al. 2007; Jiang et al. 2008; Chen et al. 2010).

​​G. lucidum is clearly rich in triterpenes, and it is this class of compounds that gives the herb its bitter taste and, it is believed, confers on its various health benefits, such as lipid-lowering and antioxidant effects. However, the triterpene content is different in different parts and growing stages of the mushroom. The profile of the different triterpenes in G. lucidum can be used to distinguish this medicinal fungus from other taxonomically related species and can serve as supporting evidence for classification. The triterpene content can also be used as a measure of the quality of different Ganoderma samples (Chen et al. 1999; Su et al. 2001)

Other Components

Elemental analysis of log-cultivated fruit bodies of G. lucidum revealed phosphorus, silica, sulfur, potassium, calcium, and magnesium to be their main mineral components. Iron, sodium, zinc, copper, manganese, and strontium were also detected in lower amounts, as were the heavy metals lead, cadmium, and mercury (Chen et al. 1998). Freeze-dried fruit bodies of unidentified Ganoderma spp. collected from the wild were reported to have a mineral content of 10.2%, with potassium, calcium, and magnesium as the major components (Chiu et al. 2000). Significantly, no cadmium or mercury was detected in these samples. G. lucidum can also contain up to 72 μg/g dry weight of selenium (Se; Falandysz 2008) and can biotransform 20–30% of inorganic selenium present in the growth substrate into selenium-containing proteins (Du et al. 2008).

Some attention has been given to the germanium content of Ganoderma spp. Germanium was fifth highest in terms of concentration (489 μg/g) among the minerals detected in G. lucidum fruit bodies collected from the wild (Chiu et al. 2000). This mineral is also present in the order of parts per billion in many plant-based foods, including ginseng, aloe, and garlic (Mino et al. 1980). Although germanium is not an essential element, at low doses, it has been credited with immuno-potentiating, antitumor, antioxidant, and antimutagenic activities (Kolesnikova, Tuzova, and Kozlov 1997). However, although the germanium content of G. lucidum has been used to promote G. lucidum-based products, there is no firm evidence linking this element with the specific health benefits associated with the mushroom.

G. lucidum contains some other compounds that may contribute to its reported medicinal effects, such as proteins and lectins. The protein content of dried G. lucidum was found to be around 7–8%, which is lower than that of many other mushrooms (Chang and Buswell 1996; Mau, Lin, and Chen 2001). Bioactive proteins are reported to contribute to the medicinal properties of G. lucidum, including LZ-8, an immunosuppressive protein purified from the mycelia (Van Der Hem et al. 1995); a peptide preparation (GLP) exhibiting hepatoprotective and antioxidant activities (Sun, He, and Xie 2004; Shi, Sun et al. 2008); and a 15-kDa antifungal protein, Ganodermin, which is isolated from G. lucidum fruiting bodies (Wang and Ng. 2006).

The carbohydrate and crude fiber content of the dried mushroom was examined and found to be 26–28% and 59%, respectively (Mau, Lin, and Chen 2001). Lectins were also isolated from the fruit body and mycelium of the mushroom (Kawagishi et al. 1997), including a novel 114-kDa hexameric lectin, which was revealed to be a glycoprotein having 9.3% neutral sugar and showing hemagglutinating activity on pronase-treated human erythrocytes (Thakur et al. 2007). Lectins (from the Latin word legere, which means to pick up, choose) are nonenzymatic proteins or glycoproteins that bind carbohydrates. Many species of animals, plants, and microorganisms produce lectins, and they exhibit a wide range of functions. In animals, for example, lectins are involved in a variety of cellular processes and the functioning of the immune system (Wang, Ng, and Ooi 1998).

Other compounds that have been isolated from G. lucidum include enzymes such as metalloprotease, which delays clotting time; ergosterol (provitamin D2); nucleosides; and nucleotides (adenosine and guanosine; Wasser 2005; Paterson 2006). Kim and Nho (2004) also described the isolation and physicochemical properties of a highly specific and effective reversible inhibitor of α-glucosidase, SKG-3, from G. lucidum fruit bodies. Furthermore, G. lucidum spores were reported to contain a mixture of several long-chain fatty acids that may contribute to the antitumor activity of the mushroom (Fukuzawa et al. 2008).


The combination of benefits without toxicity represents the desired end result in the development of effective therapeutic interventions. G. lucidum has been used for hundreds of years as a health promotion and treatment strategy; there are now many published studies that are based on animal and cell-culture models and in vitro assessment of the health effects of G. lucidum; there are also some reports of human trials in the field. However, there is no cohesive body of research, and the objective evaluation of this traditional therapy in terms of human health remains to be clearly established. In Sections 9.6.1 through 9.6.6, studies on the properties of G. lucidum in relation to cancer (which has attracted the most interest), viral and bacterial infection, diabetes, and liver injury are discussed.